Search results for "Factor automaton"
showing 4 items of 4 documents
Minimal forbidden factors of circular words
2017
Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two factorial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors. There exist algorithms for computing the minimal forbidden factors of a word, as well as of a regular factorial language. Conversely, Crochemore et al. [IPL, 1998] gave an algorithm that, given the trie recognizing a finite antifactorial language $M$, computes a DFA recognizing the language whose set of minimal forbidden factors is $M$. In the same paper, they showed that the obtained DFA is minimal if the input trie recognizes the minimal forbidden factors of a single word.…
Word assembly through minimal forbidden words
2006
AbstractWe give a linear-time algorithm to reconstruct a finite word w over a finite alphabet A of constant size starting from a finite set of factors of w verifying a suitable hypothesis. We use combinatorics techniques based on the minimal forbidden words, which have been introduced in previous papers. This improves a previous algorithm which worked under the assumption of stronger hypothesis.
Special factors and the combinatorics of suffix and factor automata
2011
AbstractThe suffix automaton (resp. factor automaton) of a finite word w is the minimal deterministic automaton recognizing the set of suffixes (resp. factors) of w. We study the relationships between the structure of the suffix and factor automata and classical combinatorial parameters related to the special factors of w. We derive formulae for the number of states of these automata. We also characterize the languages LSA and LFA of words having respectively suffix automaton and factor automaton with the minimal possible number of states.
Minimal forbidden words and factor automata
1998
International audience; Let L(M) be the (factorial) language avoiding a given antifactorial language M. We design an automaton accepting L(M) and built from the language M. The construction is eff ective if M is finite. If M is the set of minimal forbidden words of a single word v, the automaton turns out to be the factor automaton of v (the minimal automaton accepting the set of factors of v). We also give an algorithm that builds the trie of M from the factor automaton of a single word. It yields a non-trivial upper bound on the number of minimal forbidden words of a word.